Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667015

RESUMO

This study aimed to develop a polymeric matrix of polyamide-6 (P6) impregnated with trimetaphosphate (TMP) nanoparticles and silver nanoparticles (AgNPs), and to evaluate its antimicrobial activity, surface free energy, TMP and Ag+ release, and cytotoxicity for use as a support in dental tissue. The data were subjected to statistical analysis (p < 0.05). P6 can be incorporated into TMP without altering its properties. In the first three hours, Ag+ was released for all groups decorated with AgNPs, and for TMP, the release only occurred for the P6-TMP-5% and P6-TMP-10% groups. In the inhibition zones, the AgNPs showed activity against both microorganisms. The P6-TMP-2.5%-Ag and P6-TMP-5%-Ag groups with AgNPs showed a greater reduction in CFU for S. mutans. For C. albicans, all groups showed a reduction in CFU. The P6-TMP groups showed higher cell viability, regardless of time (p < 0.05). The developed P6 polymeric matrix impregnated with TMP and AgNPs demonstrated promising antimicrobial properties against the tested microorganisms, making it a potential material for applications in scaffolds in dental tissues.

2.
Pharmaceutics ; 16(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675223

RESUMO

This work assessed the influence of the amount of dentifrice and fluoride (F) concentration in the product on the pH and inorganic components of Streptococcus mutans and Candida albicans dual-species biofilms. The biofilms were treated with suspensions of fluoride dentifrices containing 550 or 1100 ppm of F (550 F or 1100 F, respectively) administered at comparable intensities: (i-1) 550 F/0.08 g or 1100 F/0.04 g; (i-2) 550 F/0.16 g or 1100 F/0.08 g; and (i-3) 550 F/0.32 g or 1100 F/0.16 g. A placebo dentifrice (without NaF, 0.32 g) was used as a negative control. After the last treatment, the biofilm pH was measured and the F, calcium (Ca), and phosphorus (P) concentrations were determined. Data were subjected to an ANOVA/Kruskal-Wallis test, and a Student-Newman-Keuls test. The highest biofilm pH and F concentrations (biomass and fluid) were observed for 1100 F at i-3. Overall, 1100 F resulted in F levels similar to 550 F for i-1 and i-2. In addition, 550 F applied at i-2 and i-3 led to higher F in the biomass/fluid compared to 1100 F applied at i-1 and i-2, respectively. In biomass, the lowest Ca concentrations were observed for 1100 F at i-3. The conclusion drawn is that the treatment intensity holds greater significance as a parameter compared to the concentration of F or the amount of dentifrice when considered individually.

3.
Antibiotics (Basel) ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627754

RESUMO

This study evaluated the antimicrobial effect of toothpastes containing 200 ppm fluoride (200F), xylitol (X, 16%), erythritol (E, 4%), and sodium trimetaphosphate (TMP, 0.25%), alone or in different associations, against Streptococcus mutans (SM), Lactobacillus casei (LC), Actinomyces israelii (AI), and Candida albicans (CA). Suspensions of the micro-organisms were added to a BHI Agar medium. Five wells were made on each plate to receive toothpaste suspensions at different dilutions. Toothpastes containing no actives (placebo) or 1100 ppm F (1100F) were used as negative and positive controls. Two-way ANOVA and Tukey's HDS test were used (p < 0.05). For SM, the largest halo was for 200F+TMP at all dilutions, followed by the 200F+X+E toothpaste (p < 0.001). For LC, the overall trend showed that the polyols effectively inhibited microbial growth, and the association with the other compounds enhanced such effects (p < 0.001). For AI, a less-defined trend was observed. For CA, the experimental toothpaste (200F+X+E+TMP) was consistently more effective than the other treatments, followed by 200F+X+E (p < 0.001). The association of polyols and TMP in a low-fluoride toothpaste effectively reduced the growth of cariogenic micro-organisms (SM, CA, and LC), suggesting that this formulation could be an interesting alternative for children due to its low fluoride content.

4.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629091

RESUMO

Although the association of polyols/polyphosphates/fluoride has been demonstrated to promote remarkable effects on dental enamel, little is known on their combined effects on biofilms. This study assessed the effects of solutions containing fluoride/sodium trimetaphosphate (TMP)/xylitol/erythritol on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were grown in the continuous presence of these actives alone or in different associations. Quantification of viable plate counts, metabolic activity, biofilm biomass, and extracellular matrix components were evaluated. Overall, fluoride and TMP were the main actives that significantly influenced most of the variables analyzed, with a synergistic effect between them for S. mutans CFUs, biofilm biomass, and protein content of the extracellular matrix (p < 0.05). A similar trend was observed for biofilm metabolic activity and carbohydrate concentrations of the extracellular matrix, although without statistical significance. Regarding the polyols, despite their modest effects on most of the parameters analyzed when administered alone, their co-administration with fluoride and TMP led to a greater reduction in S. mutans CFUs and biofilm biomass compared with fluoride alone at the same concentration. It can be concluded that fluoride and TMP act synergistically on important biofilm parameters, and their co-administration with xylitol/erythritol significantly impacts S. mutans CFUs and biomass reduction.


Assuntos
Fluoretos , Xilitol , Fluoretos/farmacologia , Xilitol/farmacologia , Polifosfatos/farmacologia , Biofilmes , Eritritol/farmacologia
5.
Antibiotics (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830332

RESUMO

This study evaluated the effects of calcium glycerophosphate (CaGP), with or without fluoride (F), on dual-species biofilms of Streptococcus mutans and Candida albicans. The biofilms were treated three times with 0.125, 0.25, and 0.5% CaGP solutions, with or without 500 ppm F (NaF). Additionally, 500 and 1100 ppm F-solutions and artificial saliva served as controls. After the final treatment, the microbial viability and biofilm structure, metabolic activity, total biomass production, and the composition of the extracellular matrix composition were analyzed. Regardless of the presence of F, 0.25 and 0.5% CaGP promoted a higher biomass production and metabolic activity increase than the controls (p < 0.05). F-free CaGP solutions reduced bacterial cell population significantly more than the 500 ppm F group or the negative control (p < 0.05). All the groups reduced the proteins, and 0.5% CaGP combined with F led to the highest reduction in the carbohydrate and nucleic acids content of the extracellular matrix (p < 0.05). It can be concluded that CaGP alone affected the number of bacterial cells and, when combined with F, reduced its production of biomass, metabolic activity, and the expression of the extracellular matrix components.

6.
Antibiotics (Basel) ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36009913

RESUMO

In order to improve the anticaries effects of fluoridated products, the supplementation of these products has been considered a promising alternative for caries control. This study evaluated the effects of sodium hexametaphosphate (HMP) and/or fluoride (F) on the inorganic components and pH of Streptococcus mutans and Candida albicans dual-species biofilms. The biofilms were treated 72, 78, and 96 h after the beginning of their formation with 0.25, 0.5, or 1% HMP-containing solutions with or without F (500 ppm, as sodium fluoride). F-containing solutions (500 ppm and 1100 ppm) and artificial saliva were used as controls. The biofilms were exposed to a 20% sucrose solution after the third treatment. Along with the biofilm pH, the concentrations of F, calcium, phosphorus (P), and HMP were determined. HMP, combined with F, increased F levels and decreased P levels in the biofilm fluid compared to that of the solution with 500 ppm F. Exposure to sucrose decreased the concentrations of all ions in the biomass, except for HMP; 1% HMP, combined with F, promoted the highest pH. It can be concluded that HMP affected the inorganic composition of the biofilm and exerted a buffering effect on the biofilm pH.

7.
Biofouling ; 38(4): 321-330, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35535502

RESUMO

This study evaluated the effects of micrometric or nano-sized sodium hexametaphosphate (HMPnano), combined or not with fluoride (NaF, 1100 ppm), on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were treated with solutions containing the polyphosphates at 0.5% or 1.0%, with/without fluoride (F), in addition to positive and negative controls. Biofilms were analysed by colony-forming units (CFU) counting, metabolic activity, production of biomass, composition of extracellular matrix, and structure. 1% HMPnano + F led to the lowest S. mutans CFU, while C. albicans CFU counts were not affected by any solution. 1% HMPnano led to the lowest metabolic activity, except for 1% HMPnano + F. All solutions promoted reductions in biofilm biomass compared to controls. Also, 1% HMPnano + F promoted the lowest concentrations of carbohydrates in the biofilm matrix, besides substantially affecting biofilms' structure. In conclusion, HMPnano and F promoted higher antibiofilm effects compared with its micrometric counterpart for most of the parameters assessed.


Assuntos
Candida albicans , Streptococcus mutans , Biofilmes , Fluoretos/farmacologia , Fosfatos , Polifosfatos/farmacologia
8.
Caries Res ; 56(1): 81-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34700319

RESUMO

It has been stated that sodium trimetaphosphate (TMP) promotes a more anionic dentin surface inducing greater calcium (Ca) and phosphate precipitation. The aim of the present study was to evaluate in vitro the surface free energy (γs) of dentin after treatment with TMP associated or not with fluoride (F), exposed or not to Ca, as well as the adsorption of TMP, F, and Ca by dentin. Bovine dentin blocks (n = 12 blocks/group) were treated with solutions containing TMP at 0, 1, 3, or 9 (w/v) followed or not by the application of Ca. These solutions were or were not associated to 1,100 ppm F. F, Ca, and TMP were determined in the solutions before and after the treatment to calculate the adsorption by dentin. To analyze the γs of dentin, the apolar (γsLW), and polar (γsAB), components were determined by contact angle measurement. Data were submitted to 2-way ANOVA followed by the Student-Newman-Keuls test (p < 0.05). TMP reduces γs of dentin and increases electron donor sites (γs-). Higher values of γs- led to higher adsorption of Ca (p < 0.001). The F/TMP association did not change γs or γsLW and reduced the values of γs-, but the adsorption of Ca was higher. There was correlation between the adsorption of TMP and γs- (Pearson's r = 0.801; p < 0.001) and F (Pearson's r = 0.871, p < 0.001). It is possible to conclude that TMP increased γs- and Ca adsorption, and reduced γs. The association with F increased the adsorption of TMP without rising γs-; however, there was higher adsorption of Ca.


Assuntos
Cálcio , Fluoretos , Animais , Bovinos , Dentina , Fluoretos/farmacologia , Humanos , Polifosfatos/farmacologia , Fluoreto de Sódio/farmacologia
9.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616080

RESUMO

In light of the promising effect of sodium trimetaphosphate nanoparticles (TMPn) on dental enamel, in addition to the scarce evidence of the effects of these nanoparticles on biofilms, this study evaluated the activity of TMPn with/without fluoride (F) on the pH, inorganic composition and extracellular matrix (ECM) components of dual-species biofilms of Streptococcus mutans and Candida albicans. The biofilms were cultivated in artificial saliva in microtiter plates and treated with solutions containing 1% or 3% conventional/microparticulate TMP (TMPm) or TMPn, with or without F. After the last treatment, the protein and carbohydrate content of the ECM was analyzed, and the pH and F, calcium (Ca), phosphorus (P), and TMP concentrations of the biofilms were determined. In another set of experiments, after the last treatment, the biofilms were exposed to a 20% sucrose solution, and their matrix composition, pH, and inorganic component contents were evaluated. 3% TMPn/F significantly reduced ECM carbohydrate and increased biofilm pH (after sucrose exposure) than other treatments. Also, it significantly increased P and F levels before sucrose exposure in comparison to 3% TMPm/F. In conclusion, 3% TMPn/F affected the biofilm ECM and pH, besides influencing inorganic biofilm composition by increasing P and F levels in the biofilm fluid.

10.
J Dent ; 115: 103844, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637893

RESUMO

OBJECTIVES: This study evaluated the influence of calcium glycerophosphate (CaGP), combined with or without fluoride (F), on the pH and concentrations of F, Ca, and P of dual-species biofilms of Streptococcus mutans and Candida albicans, with or without exposure to sucrose. METHODS: The biofilms (n = 9) received three treatments (72, 78, and 96 h after the start of their formation) at three CaGP concentrations (0.125, 0.25, or 0.5%), with or without F at 500 ppm (as NaF). Solutions containing 500 and 1100 ppm F and artificial saliva were also tested as controls. Biofilm pH was measured, and the concentrations of F, Ca, P, and CaGP were determined (solid and fluid phases). In a parallel experiment, after the third treatment, the treated biofilms were exposed to a sucrose solution, and the pH of the medium, F, Ca, P, and CaGP was determined. Data were subjected to two-way ANOVA, followed by Fisher's LSD test (p < 0.05). RESULTS: Treatment with CaGP and 500 ppm F led to the highest pH values and F and Ca concentrations in the biofilm biomass, both with and without sucrose exposure. CaGP without F led to higher Ca and P concentrations in the biofilm fluid. CONCLUSIONS: CaGP increased F, Ca, and P concentrations in the biofilm, and its presence promoted an increase in the pH of the medium, even after exposure to sucrose. CLINICAL SIGNIFICANCE: The present results elucidate the mechanism by which CaGP and F act on biofilms, further interfering with dental caries dynamics.


Assuntos
Cárie Dentária , Streptococcus mutans , Biofilmes , Candida albicans , Fluoretos/farmacologia , Glicerofosfatos/química , Glicerofosfatos/farmacologia , Concentração de Íons de Hidrogênio
11.
Araçatuba; s.n; 2021. 57 p. ilus, graf, tab.
Tese em Português | LILACS, BBO - Odontologia | ID: biblio-1413823

RESUMO

O uso de novos materiais nanocompósitos para fabricação de dispositivos protéticos, matrizes para preenchimento de defeitos ósseos, proteção do tecido pulpar de dentes e túbulos dentinários expostos pode colaborar significativamente na qualidade de vida da população. Objetivo: Realizar o processamento da matriz polimérica de poliamida-6 (P6) impregnada com nanopartículas de trimetafosfato (TMP) e nanopartícula de prata (AgNP), avaliar a atividade antimicrobiana contra Streptococcus mutans e Candida albicans e a liberação de TMP e Ag+ . Métodos: Foi determinado a concentração inibitória mínima (CIM) da AgNP com ou sem a presença da NH3 para S. mutans e C. albicans. Em seguida, realizado a síntese e caracterização dos nanocompósios (P6, P6-2,5, 5 e 10%TMP associado ou não a AgNP), quantificação das unidades formadoras de colônia (UFC), determinação do halo de inibição e quantificação de TMP e Ag+ liberados durante 1, 2, 3, 4, 5, 10, 12, 14, 16, 18, 20 e 24 horas em água deionizada. Os dados foram submetidos à análise de variância bidirecional, seguida do teste de Fisher LSD (p< 0,05). Resultados: A CIM para C. albicans foi de 9,40 mg/mL com ou sem a presença da NH3 e para o S. mutans foi de 601,9 mg/mL com NH3 e 300,9 mg/mL sem NH3. Nos testes de caracterização foi possível incorporar a P6 com TMP sem alterar suas propriedades. A maior quantidade de Ag+ liberada ocorreu nas primeiras três hora para todos os grupos decorados com AgNP. Houve liberação de TMP nas primeira três horas para os grupos P6-5%TMP e P6-10%TMP e para as demais membranas não foram detectadas liberações. No ensaio de difusão em ágar os halos formados para C. albicans e S. mutans mostraram ação da AgNP para ambos os microrganismos. Os grupos P6-Ag2,5%TMP e P6-Ag-5%TMP com AgNP apresentam maior redução de UFC para S. mutans quando comparado aos demais grupos, com maior redução no tempo de 18 horas. Para C. albicans todos os grupos apresentaram redução na UFC quando comparado ao controle, sem diferença estatística entre os mesmo. Conclusão: Foi possível desenvolver um matriz polimérica de P6 impregnada com TMP e AgNP com ação antimicrobiana contra os microrganismos testados(AU)


The use of new nanocomposite materials for the manufacture of prosthetic devices, matrices for filling bone defects, protection of the pulp tissue of exposed teeth and dentinal tubules can significantly contribute to the quality of life of the population. Objective: To perform the processing of the polymeric matrix of polyamide. 6 (P6) impregnated with trimetaphosphate nanoparticles (TMP) and silver nanoparticles (AgNP), evaluate the antimicrobial activity against Streptococcus mutans and Candida albicans and the release of TMP and Ag +. Methods: The minimum inhibitory concentration (MIC) of AgNP was determined with or without the presence of NH3 for S. mutans and C. albicans. Then, the synthesis and characterization of the nanocomposites (P6, P6-2.5, 5 and 10% TMP associated or not with AgNP), quantification of colony forming units (CFU), determination of the inhibition halo and quantification of TMP and Ag + released during 1, 2, 3, 4, 5, 10, 12, 14, 16, 18, 20 and 24 hours in deionized water. The data were submitted to bidirectional analysis of variance, followed by the Fisher LSD test (p < 0.05). Results: The MIC for C. albicans was 9.40 mg / mL with or without the presence of NH3 and for S. mutans it was 601.9 mg / mL with NH3 and 300.9 mg / mL without NH3. In the characterization tests it was possible to incorporate the P6 with TMP without changing its properties. The highest amount of Ag + released occurred in the first three hours for all groups decorated with AgNP. There was TMP release in the first three hours for the P6-5% TMP and P6-10% TMP groups and for the other membranes, no releases were detected. In the agar diffusion assay, halos formed for C. albicans and S. mutans showed AgNP action for both microorganisms. The P6-Ag-2.5% TMP and P6-Ag-5% TMP groups with AgNP show a greater reduction in CFU for S. mutans when compared to the other groups, with a greater reduction in the time of 18 hours. For C. albicans, all groups showed a reduction in CFU when compared to the control, with no statistical difference between them. Conclusion: It was possible to develop a polymeric matrix of P6 impregnated with TMP and AgNP with antimicrobial action against the microorganisms tested(AU)


Assuntos
Fosfatos , Prata , Streptococcus mutans , Candida albicans , Nanopartículas , Anti-Infecciosos , Nylons , Materiais Biocompatíveis , Testes de Sensibilidade Microbiana
12.
Clin Oral Investig ; 23(5): 2345-2354, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30298451

RESUMO

OBJECTIVES: To evaluate the effects of hexametaphosphate microparticles (mHMP) or nanoparticles (nHMP) incorporated in glass ionomer cement (GIC) on antimicrobial and physico-mechanical properties, fluoride (F) release, and enamel demineralization. MATERIAL AND METHODS: HMP solutions were obtained at concentrations of 1, 3, 6, 9, and 12%, for screening of antimicrobial activity. Next, mHMP or nHMP at 6, 9, and 12% were incorporated into a resin-modified GIC and the antibacterial activity was evaluated. The resistance to diametral tensile and compressive strength, surface hardness, and degree of monomer conversion as well as F and HMP releases of GICs were determined. Furthermore, specimens were attached to enamel blocks and submitted to pH-cycling, and mineral loss was determined. Parametric and non-parametric tests were performed, after checking data homoscedasticity (p < 0.05). RESULTS: HMP solutions at 6, 9, and 12% demonstrated the best antibacterial activity. GIC containing HMP showed better antibacterial effects at 9 and 12% for nHMP. Regarding F and HMP releases, the highest levels of release occurred for groups containing 9 and 12% nHMP. With the increase in HMP concentration, there was lower mineral loss. However, the incorporation of mHMP or nHMP in GIC reduced values of physico-mechanical properties when compared to the control GIC. CONCLUSIONS: nHMP improves antimicrobial activity and fluoride release, and decreases enamel demineralization, but reduces the physico-mechanical properties of GIC. CLINICAL RELEVANCE: The association of GIC/HMP could be an alternative material for patients at high risk for dental caries and could be indicated for low-stress regions or provisional restorations.


Assuntos
Antibacterianos/química , Esmalte Dentário/efeitos dos fármacos , Cimentos de Ionômeros de Vidro/química , Fosfatos/química , Animais , Bovinos , Cárie Dentária , Fluoretos/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Desmineralização do Dente/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...